Semantic Parsing of Mathematics by Context-based Learning from Aligned Corpora and Theorem Proving
نویسندگان
چکیده
We study methods for automated parsing of informal mathematical expressions into formal ones, a main prerequisite for deep computer understanding of informal mathematical texts. We propose a context-based parsing approach that combines efficient statistical learning of deep parse trees with their semantic pruning by type checking and large-theory automated theorem proving. We show that the methods very significantly improve on previous results in parsing theorems from the Flyspeck corpus.
منابع مشابه
Learning To Parse on Aligned Corpora
One of the first big hurdles that mathematicians encounter when considering writing formal proofs is the necessity to get acquainted with the formal terminology and the parsing mechanisms used in the large ITP libraries. This includes the large number of formal symbols, the grammar of the formal languages and the advanced mechanisms instrumenting the proof assistants to correctly understand the...
متن کاملLearning Intelligent Theorem Proving from Large Formal Corpora
The talk will discuss several AI methods used to learn proving of conjectures over large formal mathematical corpora. This includes (i) machine-learning methods that learn from previous proofs how to suggest the most relevant lemmas for proving the next conjectures, (ii) methods that guide low-level proof-search algorithms based on previous proof traces, and (iii) methods that automatically inv...
متن کاملAutomating Formalization by Statistical and Semantic Parsing of Mathematics
We discuss the progress in our project which aims to automate formalization by combining natural language processing with deep semantic understanding of mathematical expressions. We introduce the overall motivation and ideas behind this project, and then propose a context-based parsing approach that combines efficient statistical learning of deep parse trees with their semantic pruning by type ...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملThe Impact of Grammar Enhancement on Semantic Resources Induction
In this paper describes the effects of the evolution of an Italian dependency grammar on a task of multilingual FrameNet acquisition. The task is based on the creation of virtual English/Italian parallel annotation corpora, which are then aligned at dependency level by using two manually encoded grammar based dependency parsers. We show how the evolution of the LAS (Labeled Attachment Score) me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.09703 شماره
صفحات -
تاریخ انتشار 2016